

Evaluating Whisper for Sociolinguistic Data Transcription

IVACS conference | University of Cambridge JProf. Dr. Andreas Weilinghoff

Table of Contents

• ASR Perf • OpenAl • Researc	formance and Sociolinguistic data Whisper and previous research h aims and research questions
02 Data and Method	Datasets (ICE Scotland ICE Nigeria) Data preparation Data analysis
03 Findings	 Accuracy of Whisper models Influencing factors on WER Whisper vs. Human transcribers (accuracy and speed)
04 Discussion	 Human and Whisper transcripts Hallucination and Correction Time-stamping and Speaker diarization
05 Conclusions	

> 01 Introduction

01 ASR Performance

... the higher the audio quality

... the more structured the speech -

... the more 'standard' the speech

... the less speakers involved

(Jurafsky and Martin 2023: 331)

... the better

> Evaluating Whisper for Sociolinguistic Data Transcription

JProf Dr Andreas Weilinghoff

sociolinguistic speech data

01 OpenAl Whisper

Radford et al. 2022

- End-to-end transformer architecture with encoder and decoder blocks
- trained on 680,000 hours of speech via unsupervised learning
- multilingual in 96 languages
- machine translation to English possible

Python script whisper_to_textgrid.py (Weilinghoff 2023)

01 OpenAl Whisper

- different models available

Size	Parameters	English-only model	Multilingual model	Required VRAM	Relative speed
tiny	39 M	tiny.en	tiny	~1 GB	~32x
base	74 M	base.en	base	~1 GB	~16x
small	244 M	small.en	small	~2 GB	~6x
medium	769 M	medium.en	medium	~5 GB	~2x
large	1550 M	N/A	large	~10 GB	1x

01 Previous research

"Speech is easier to recognize if the speaker is speaking the same dialect or variety that the system was trained on" (Jurafsky and Martin 2023: 331)

- ASR bias towards

- → non-native speakers (e.g. Knill et al. 2018; Graham and Roll 2024)
- → regional accents (Tatman 2017; Markl 2022)
- → racial minority groups (Koenecke et al. 2020)

- influence of gender
- → better Youtube captions for male speakers (Tatman 2017)
 → better performance for female speakers
 (Adda-Decker and Lamel 2005; Goldwater et al. 2010)

01 Previous research

Whisper evaluation: (Graham and Roll 2024)

L1 varieties: → best performance on L1 North American English
 → worse performance on British and Australian accents

(some L2 Swedish and German accents better than some British accents; e.g. Leeds)

- worse performance on L2 varieties overall; higher English experience and pronunciation accuracy lead to better ASR performance
- worse performance on male speakers
- worse performance on spontaneous speech

01 Research aims and research questions

→ identify strengths/weaknesses of Whisper for sociolinguistic data transcription

→ integrate Whisper efficiently in sociolinguistic data transcription workflows

What is the **transcription accuracy** of different Whisper models for the corpora ICE Nigeria & ICE Scotland?

R02	

Which variables have a **significant influence on ASR performance**?

How does **Whisper compare with trained human transcribers** in terms of accuracy and speed?

> 02 Data and Method

What is the **transcription accuracy** of different Whisper models for the corpora ICE Nigeria & ICE Scotland?

ICE Nigeria (Wunder et al. 2008)

- postcolonial outer-circle variety
- compilation 2007-2013
- manually transcribed spoken component

Extraction:

- 60 sound files | 12 speech categories
 → 13:05:47 hours | 94,499 words

(Schützler et al. 2017)

- inner-circle variety (not GA or SSBE)
- compilation 2014-2020
- manually transcribed spoken component (time-aligned)

Extraction:

- 60 sound files | 12 speech categories
 → 11:50:31 hours | 111,418 words

	corpus	file_name	file_duration	word_count
ĺ	ICE Nigeria	bdis_01	00:12:47	2143
I	ICE Nigeria	bdis_02	00:07:46	1165
	ICE Nigeria	bdis_03	00:03:23	587
	ICE Nigeria	bdis_04	00:07:58	1296
	ICE Nigeria	bdis_05	00:01:16	201
	ICE Nigeria	bnew_01	00:05:24	555
	ICE Nigeria	bnew_02	00:09:07	1143
	ICE Nigeria	bnew_03	00:16:27	1473
	ICE Nigeria	bnew_04	00:15:24	1231
	ICE Nigeria	bnew_05	00:12:54	887
	ICE Nigeria	btal_01	00:08:17	1056
	ICE Nigeria	btal_02	00:02:51	503
	ICE Nigeria	btal_03	00:01:46	193
	ICE Nigeria	btal_04	00:08:59	1198
	ICE Nigeria	btal_05	00:04:28	708
	ICE Nigeria	leg_02	00:23:27	3979
	ICE Nigeria	leg_04	00:15:59	2352
ļ	ICE Nigeria	leg_11	00:06:19	1212
Į	ICE Nigeria	leg_08	00:02:44	586
ļ	ICE Nigeria	leg_09	00:03:59	790
Į	ICE Nigeria	nbtal_01	00:16:55	1536
ļ	ICE Nigeria	nbtal_02	00:06:11	521
Į	ICE Nigeria	nbtal_03	00:21:40	2346
ļ	ICE Nigeria	nbtal_04	00:26:56	3409
	ICE Nigeria	nbtal_05	00:19:25	2391
	ICE Nigeria	parl_01	00:07:53	1069
ļ	ICE Nigeria	parl_02	00:07:47	1089
ļ	ICE Nigeria	parl_03	00:11:16	1350
ļ	ICE Nigeria	parl_04	00:16:21	2012
ļ	ICE Nigeria	parl_05	00:12:06	2327

corpus	file_name	file_duration	word_count
ICE Scotland	bdis_01 (s1)	00:08:53	470
ICE Scotland	bdis_02	00:20:45	3030
ICE Scotland	bdis_03	00:06:00	1115
ICE Scotland	bdis_04	00:13:58	2964
ICE Scotland	bdis_05	00:11:56	2914
ICE Scotland	bnew_01	00:02:14	159
ICE Scotland	bnew_02 (s1)	00:02:48	93
ICE Scotland	bnew_03 (s1)	00:01:39	96
ICE Scotland	bnew_04 (s1)	00:03:36	179
ICE Scotland	bnew_05	00:01:47	305
ICE Scotland	btal_01	00:02:37	415
ICE Scotland	btal_02	00:02:34	453
ICE Scotland	btal_03	00:03:24	473
ICE Scotland	btal_04	00:02:52	379
ICE Scotland	btal_05	00:07:51	934
ICE Scotland	leg_01	00:19:08	2033
ICE Scotland	leg_02	00:22:32	2168
ICE Scotland	leg_03	00:02:29	324
ICE Scotland	leg_04	00:10:39	1333
ICE Scotland	leg_05	00:05:04	713
ICE Scotland	nbtal_01	00:21:55	3040
ICE Scotland	nbtal_02	00:30:00	4835
ICE Scotland	nbtal_03	00:11:17	1739
ICE Scotland	nbtal_04	00:04:45	713
ICE Scotland	nbtal_05	00:02:31	387
ICE Scotland	parl_01	00:20:54	3782
ICE Scotland	parl_02	00:20:09	3427
ICE Scotland	parl_03	00:11:31	1776
ICE Scotland	parl_04	00:25:21	4178
ICE Scotland	parl_05	00:36:08	5900

- \rightarrow different varieties
- \rightarrow different file sizes
- \rightarrow different speech forms
- \rightarrow monologues and dialogues
- \rightarrow different speaker groups
- \rightarrow different quality

RQ1

What is the **transcription accuracy** of different Whisper models for the corpora ICE Nigeria & ICE Scotland?

- retrieval of audio files and reference transcriptions (\rightarrow plain .txt)
- re-transcription of files with Whisper models (tiny, base, small, medium, large_v2, large_v3) via AMD EPYC 7402 processor
- normalization and comparison of manual reference transcription and Whisper transcriptions via **Word Error Rate (WER)** using werpy library (Armstrong 2024) via Python script

$$WER = rac{S+D+I}{N}$$

RQ2

Which variables have a **significant influence on ASR performance**?

- annotation for metadata (corpus, text category, model, sound quality, speaker number, gender, file duration)
- following approach of Graham and Roll (2024):
- → linear mixed effects modelling of WER with Ime4 (Bates et al. 2015) and ImerTest (Kuznetsova et al. 2017) packages in R (R core team 2024)

RANDOM FACTORS	ТҮРЕ	LEVELS
sound file	categorical	120 individual sound files
FIXED FACTORS	ТҮРЕ	LEVELS
corpus	categorical	ICE Nigeria, ICE Scotland
text category	categorical	bdis, bnew, btal, btran, com, cr, dem, leg, les, nbtal, parl, unsp
model	categorical	tiny, base, small, medium, large_v2, large_v3
quality_2	categorical	okay, bad
speaker number binary	categorical	mono, poly
gender	categorical	female, male, mixed
file duration (min)	numerical	1-48

RQ3

- How does **Whisper compare with trained human transcribers** in terms of accuracy and speed?
- subset of dataset (24 files) re-transcribed by human transcribers
 → trained student assistants (Bachelor's degree in English studies)
 → close tracking of working time
- subset transcribed with Whisper models via laptop

(Processor: AMD Ryzen 7 Pro 6850 U with Radeon Graphics (2.70 GHz), RAM: 32 GB, OS: Windows 11, 64 bit) Via Python script

- \rightarrow automated tracking of working time
- normalization and comparison of human and Whisper transcripts in terms of accuracy (WER) and speed (working time/file duration)

> 03 Findings

What is the **transcription accuracy** of different Whisper models for the corpora ICE Nigeria & ICE Scotland?

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

Which variables have a **significant influence on ASR performance**?

Which variables have a **significant influence on ASR performance**?

Which variables have a **significant influence on ASR performance**?

How does **Whisper compare with trained human transcribers** in terms of accuracy and speed?

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

> 04 Discussion

Results to be published.

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

JProf Dr Andreas Weilinghoff

IVACS | University of Cambridge 17th July 2024

24

\rightarrow WhisperX (Bain et al. 2023)

(Bain et al. 2023: 1)

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

Results to be published.

04 Discussion – speaker diarization

Results to be published.

04 Discussion – speaker diarization

> 05 Conclusion

What is the **transcription accuracy** of different Whisper models for the corpora ICE Nigeria & ICE Scotland?

Which variables have a **significant influence on ASR performance**?

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

How does **Whisper compare with trained human transcribers** in terms of accuracy and speed?

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

NEXT STEPS

Results to be published.

> Evaluating Whisper for Sociolinguistic Data Transcription

> References

Adda-Decker, M., and Lamel, L. (2005). "Do speech recognizers prefer female speakers?," in *Proceedings of INTERSPEECH*, Lisbon, Portugal (International Speech Communication Association, Baixas, France).

Armstrong, R. (2024). werpy - Word Error Rate for Python [Computer software]. https://github.com/analyticsinmotion/werpy

Ashraf, M. (2023). Speaker Diarization Using OpenAI Whisper. [Computer software]. https://github. com/MahmoudAshraf97/whisper-diarization

Baevski,., Zhou, Y., Mohamed, A. & Auli, M. (2020). "wav2vec 2.0: A framework for self-supervised learning of speech representations," *NeurIPS*, vol. 33, pp. 12449–12460.

Bain, M., Huh, J., Han, T. & Zisserman, A. (2023). *WhisperX: Time-Accurate Speech Transcription of Long-Form Audio*. https://www.robots.ox.ac.uk/~vgg/publications/2023/Bain23/bain23.pdf

Boersma, P., & Weenink, D. (2019). Praat: doing phonetics by computer (Version 6.1.08) [Computer software]. http://www.praat.org/

Desplanques, B., Thienpondt, J. & Demuynck, K. (2020). ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification. https://arxiv.org/pdf/2005.07143.pdf

Goldwater, S., Jurafsky, D., & Manning, C. (2010). "Which words are hard to recognize? prosodic, lexical, and disfluency factors that increase speech recognition error rates," *Speech Communication* 52(3), 181–200.

Graham, C. & Roll, N. (2024). Evaluating OpenAI's Whisper ASR: Performance analysis across diverse accents and speaker traits. *The Journal of the Acoustical Society of America*. https://doi.org/10.1121/10.0024876

Hirschle, J. (2022). Deep Natural Language Processing. Einstieg in Word Embedding, Sequence-to-Sequence Modelle und Transformer mit Python. Munich: Hanser Publishing.

IBM (2022). Watson Speech to Text. [Software]. Retrieved from: https://www.ibm.com/cloud/watson-speech-to-text [Date of access: 25 Nov. 2022].

Jurafsky, D. & Martin, J. H. (2023). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf

References

Kisler, T., Reichel, U. D., & Schiel, F. (2017). Multilingual processing of speech via web services. *Computer Speech & Language*, 45, 326–347.

Klein, G. (2023). *faster-whisper*. [Computer software]. https://github.com/guillaumekln/faster-whisper

Knill, K., Gales, M., Kyriakopoulos, K., Malinin, A., Ragni, A., Wang, Y., and Caines, A. (2018). "Impact of ASR performance on free speaking language assessment," in *Proceedings of Interspeech 2018*, Hyderabad, India (International Speech Communication Association, Baixas, France), pp. 1641–1645.

Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z., Toups, C., Rickford, J. R., Jurafsky, D., and Goel, S. (2020). "Racial disparities in automated speech recognition," *Proc. Natl. Acad. Sci. U.S.A.* 117(14), 7684–7689.

Markl, N. (2022). "Language variation and algorithmic bias: Understanding algorithmic bias in British English automatic speech recognition," in *Proceedings of 2022 5th ACM Conference on Fairness, Accountability, and Transparency* (FAccT 2022), June 21–24, Seoul (Association for Computing Machinery, New York), pp. 521–534.

Python Software Foundation. (2021). Python (Version 3.9) [Computer software]. http://www.python.org

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C. & Sutskever, I. (2022): Robust Speech Recognition via Large-Scale Weak Supervision. https://arxiv.org/abs/2212.04356

Schützler, O., Gut, U., & Fuchs, R. (2017). New perspectives on Scottish Standard English: Introducing the Scottish component of the International Corpus of English. In S. Hancil & J. C. Beal (Eds.), *Perspectives on Northern Englishes* (pp. 273–302). Mouton de Gruyter.

Tatman, R., and Kasten, C. (2017). "Effects of talker dialect, gender and race on accuracy of Bing speech and YouTube automatic captions," in *Proceedings of Interspeech, Stockholm, Sweden* (International Speech Communication Association, Baixas, France), pp. 934–938.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. & Polosukhin, I. (2017). Attention Is All You Need. https://arxiv.org/pdf/1706.03762.pdf

Weilinghoff, A. (2023): whisper_to_textgrid+eaf.py (Version 1.0) [Source code]. https://www.andreas-weilinghoff.com/#code

Wunder, Eva-Maria & Voormann, Holger & Gut, Ulrike. (2008). "The ICE Nigeria corpus project: Creating an open, rich and accurate corpus." International Computer Archive of Modern and Medieval English (ICAME) Journal, 34, pp. 78-88.

Yu, D., Deng, L. (2015). Automatic Speech Recognition: A Deep Learning Approach. London: Springer Publishing.

Thank you very much for your attention!

X/Twitter: <u>@weilinghoff</u>

Uni web: <u>https://uni-ko.de/oUfpi</u>

Private web: andreas-weilinghoff.com

