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01 ASR Performance

(Jurafsky and Martin 2023: 331)

... the higher the audio quality

… the better
... the more structured the speech

... the more ‘standard‘ the speech

... the less speakers involved

sociolinguistic
speech data
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01 OpenAI Whisper

- End-to-end transformer architecture with 
encoder and decoder blocks

- trained on 680,000 hours of speech via 
unsupervised learning

- multilingual in 96 languages

- machine translation to English possible

Radford et al. 2022
Python script

whisper_to_textgrid.py
(Weilinghoff 2023)
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01 OpenAI Whisper

- different models available



7IVACS | University of Cambridge 
17th July 2024

Evaluating Whisper for Sociolinguistic Data Transcription JProf Dr Andreas Weilinghoff

01 Previous research

“Speech is easier to recognize if the speaker is speaking the same dialect or 
variety that the system was trained on” (Jurafsky and Martin 2023: 331) 

- ASR bias towards → non-native speakers (e.g. Knill et al. 2018; Graham and Roll 2024)

    → regional accents (Tatman 2017; Markl 2022) 

    → racial minority groups (Koenecke et al. 2020) 

- influence of gender → better Youtube captions for male speakers (Tatman 2017)

    → better performance for female speakers 
      (Adda-Decker and Lamel 2005; Goldwater et al. 2010)
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01 Previous research

Whisper evaluation: (Graham and Roll 2024)

- L1 varieties: → best performance on L1 North American English

   → worse performance on British and Australian accents

   (some L2 Swedish and German accents better than some British accents; e.g. Leeds)

- worse performance on L2 varieties overall; higher English experience and 
pronunciation accuracy lead to better ASR performance

- worse performance on male speakers 

- worse performance on spontaneous speech
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01 Research aims and research questions

→ identify strengths/weaknesses of Whisper for sociolinguistic data transcription

→ integrate Whisper efficiently in sociolinguistic data transcription workflows

What is the transcription accuracy of different Whisper models 
for the corpora ICE Nigeria & ICE Scotland?RQ1

Which variables have a significant influence on ASR 
performance?RQ2

How does Whisper compare with trained human transcribers 
in terms of accuracy and speed?RQ3



02 Data and Method
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02 Data and Method

- postcolonial outer-circle variety
- compilation 2007-2013
- manually transcribed spoken 

component

Extraction: 
- 60 sound files | 12 speech categories
→ 13:05:47 hours | 94,499 words

What is the transcription accuracy of different Whisper models 
for the corpora ICE Nigeria & ICE Scotland?RQ1

ICE Nigeria (Wunder et al. 2008) ICE Scotland (Schützler et al. 2017)

- inner-circle variety (not GA or SSBE)
- compilation 2014-2020
- manually transcribed spoken 

component (time-aligned)

Extraction:
- 60 sound files | 12 speech categories
→ 11:50:31 hours | 111,418 words
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02 Data and Method

→ different varieties
→ different file sizes
→ different speech forms
→ monologues and dialogues
→ different speaker groups 
→ different quality

corpus file_name file_duration word_count
ICE Nigeria bdis_01 00:12:47 2143
ICE Nigeria bdis_02 00:07:46 1165
ICE Nigeria bdis_03 00:03:23 587
ICE Nigeria bdis_04 00:07:58 1296
ICE Nigeria bdis_05 00:01:16 201
ICE Nigeria bnew_01 00:05:24 555
ICE Nigeria bnew_02 00:09:07 1143
ICE Nigeria bnew_03 00:16:27 1473
ICE Nigeria bnew_04 00:15:24 1231
ICE Nigeria bnew_05 00:12:54 887
ICE Nigeria btal_01 00:08:17 1056
ICE Nigeria btal_02 00:02:51 503
ICE Nigeria btal_03 00:01:46 193
ICE Nigeria btal_04 00:08:59 1198
ICE Nigeria btal_05 00:04:28 708
ICE Nigeria leg_02 00:23:27 3979
ICE Nigeria leg_04 00:15:59 2352
ICE Nigeria leg_11 00:06:19 1212
ICE Nigeria leg_08 00:02:44 586
ICE Nigeria leg_09 00:03:59 790
ICE Nigeria nbtal_01 00:16:55 1536
ICE Nigeria nbtal_02 00:06:11 521
ICE Nigeria nbtal_03 00:21:40 2346
ICE Nigeria nbtal_04 00:26:56 3409
ICE Nigeria nbtal_05 00:19:25 2391
ICE Nigeria parl_01 00:07:53 1069
ICE Nigeria parl_02 00:07:47 1089
ICE Nigeria parl_03 00:11:16 1350
ICE Nigeria parl_04 00:16:21 2012
ICE Nigeria parl_05 00:12:06 2327

… … … …

corpus file_name file_duration word_count
ICE Scotland bdis_01 (s1) 00:08:53 470
ICE Scotland bdis_02 00:20:45 3030
ICE Scotland bdis_03 00:06:00 1115
ICE Scotland bdis_04 00:13:58 2964
ICE Scotland bdis_05 00:11:56 2914
ICE Scotland bnew_01 00:02:14 159
ICE Scotland bnew_02 (s1) 00:02:48 93
ICE Scotland bnew_03 (s1) 00:01:39 96
ICE Scotland bnew_04 (s1) 00:03:36 179
ICE Scotland bnew_05 00:01:47 305
ICE Scotland btal_01 00:02:37 415
ICE Scotland btal_02 00:02:34 453
ICE Scotland btal_03 00:03:24 473
ICE Scotland btal_04 00:02:52 379
ICE Scotland btal_05 00:07:51 934
ICE Scotland leg_01 00:19:08 2033
ICE Scotland leg_02 00:22:32 2168
ICE Scotland leg_03 00:02:29 324
ICE Scotland leg_04 00:10:39 1333
ICE Scotland leg_05 00:05:04 713
ICE Scotland nbtal_01 00:21:55 3040
ICE Scotland nbtal_02 00:30:00 4835
ICE Scotland nbtal_03 00:11:17 1739
ICE Scotland nbtal_04 00:04:45 713
ICE Scotland nbtal_05 00:02:31 387
ICE Scotland parl_01 00:20:54 3782
ICE Scotland parl_02 00:20:09 3427
ICE Scotland parl_03 00:11:31 1776
ICE Scotland parl_04 00:25:21 4178
ICE Scotland parl_05 00:36:08 5900

… … … …
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02 Data and Method

What is the transcription accuracy of different Whisper models 
for the corpora ICE Nigeria & ICE Scotland?RQ1

- retrieval of audio files and reference transcriptions (→ plain .txt)
- re-transcription of files with Whisper models (tiny, base, small, medium, large_v2, large_v3) 

via AMD EPYC 7402 processor

- normalization and comparison of manual reference transcription and 
Whisper transcriptions via Word Error Rate (WER) using werpy library 
(Armstrong 2024) via Python script
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02 Data and Method

- annotation for metadata (corpus, text category, model, sound quality, speaker number, gender, file duration)  

- following approach of Graham and Roll (2024):
→ linear mixed effects modelling of WER with lme4 (Bates et al. 2015) and 

lmerTest (Kuznetsova et al. 2017) packages in R (R core team 2024)

Which variables have a significant influence on ASR 
performance?RQ2

RANDOM FACTORS TYPE LEVELS
sound file categorical 120 individual sound files
FIXED FACTORS TYPE LEVELS
corpus categorical ICE Nigeria, ICE Scotland
text category categorical bdis, bnew, btal, btran, com, cr, dem, leg, les, nbtal, parl, unsp
model categorical tiny, base, small, medium, large_v2, large_v3
quality_2 categorical okay, bad
speaker number binary categorical mono, poly
gender categorical female, male, mixed
file duration (min) numerical 1-48
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02 Data and Method

- subset of dataset (24 files) re-transcribed by human transcribers 
→ trained student assistants (Bachelor’s degree in English studies)
→ close tracking of working time 

- subset transcribed with Whisper models via laptop 
(Processor: AMD Ryzen 7 Pro 6850 U with Radeon Graphics (2.70 GHz), RAM: 32 GB, OS: Windows 11, 64 bit) via Python script 

→automated tracking of working time 

- normalization and comparison of human and Whisper transcripts in terms 
of accuracy (WER) and speed (working time/file duration)

How does Whisper compare with trained human transcribers 
in terms of accuracy and speed?RQ3



03 Findings
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03 Findings

What is the transcription accuracy of different Whisper models 
for the corpora ICE Nigeria & ICE Scotland?RQ1

Whisper 

model

ICE Nigeria ICE Scotland

mean WER st. dev. mean WER st. dev. 

tiny 0.53 0.29 0.27 0.20

base 0.44 0.29 0.24 0.20

small 0.35 0.24 0.21 0.18

medium 0.32 0.24 0.20 0.18

large_v2 0.29 0.22 0.20 0.18

large_v3 0.29 0.22 0.20 0.17

Results to be published.
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03 Findings

Which variables have a significant influence on ASR 
performance?RQ2

Extremely high R² values for best model:
wer ~ (model * corpus) + (model * quality_2) + text_category + speaker_number_binary + 
gender_simplified + (1 | file_name)

Marginal R²: 0.72

Conditional R²: 0.95

Results to be published.
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03 Findings

Which variables have a significant influence on ASR 
performance?RQ2

Significant factors:

model → 10%, 21%, 25%, 30% decrease of WER with model size
corpus → 11% decrease of WER for ICE Scotland
quality → 24% decrease of WER for good quality audio
text_category → increase of WER for text categories: com, cr, dem, leg, les, unsp
speaker_number → 19% increase of WER for audio files with several speakers

gender → 8% increase of WER for audio files with male speakers

wer ~ (model * corpus) + (model * quality_2) + text_category + speaker_number_binary + gender_simplified + (1 | file_name)

Results to be published.
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03 Findings

Which variables have a significant influence on ASR 
performance?RQ2

Results to be published.
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03 Findings

How does Whisper compare with trained human transcribers 
in terms of accuracy and speed?RQ3

# accuracy # speed

Results to be published.



04 Discussion
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04 Discussion

- some human reference transcripts worse than Whisper transcripts
→ increase in WER 

- Whisper can hallucinate (repetitions)
→bad quality audio
→ long periods of silence
→ speaker overlaps / interruptions
→ switch to creole (ICE Nigeria)

- Whisper automatically “corrects“ transcripts
→problematic for close transcription (wav2wec as alternative?)
→ increase in WER

Results to be published.
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04 Discussion - timestamps

- Whisper splits the audio up and produces relatively imprecise timestamps

→ max duration of 30 seconds per chunk
(sequence transcription, no word
segmentation)

→ can be a problem for further data
preparation
(speaker identification, forced alignment, 
syntactic parsing etc.)

Results to be published.
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04 Discussion - timestamps

→ WhisperX (Bain et al. 2023)

(Bain et al. 2023: 1)
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04 Discussion - timestamps

WhisperResults to be published.
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04 Discussion - timestamps

200ms pause threshold
for Python utterance parser

WhisperXResults to be published.
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04 Discussion – speaker diarization

- Whisper cannot identify speakers
- not a big problem for “structured dialogue“ (whisper segmentation usually

corresponds with turns/utterances)

Results to be published.
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04 Discussion – speaker diarization

→ Whisper diarization with Nvidia NeMo (Ashraf 2023) (based on faster_whisper and whisperX)

1. Pre-extractions of vocals from audio
2. Whisper transcription and WhisperX alignment correction
3. Timestamps passed into MarbleNET for VAD → segmentation excluding silences
4. TitaNetL used for speaker embeddings, then clustering and diarization

Results to be published.



05 Conclusion
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- best accuracy for models large_v2 & large_v3 (also most robust models)

- worse results for ICE Nigeria than for ICE Scotland overall

→accent bias (outer circle variety)

→Whisper more robust than other systems

(recording quality of ICE Nigeria worse)

05 Conclusion and References

What is the transcription accuracy of different Whisper models 
for the corpora ICE Nigeria & ICE Scotland?RQ1

Results to be published.
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05 Conclusion and References

Which variables have a significant influence on ASR 
performance?RQ2

model

corpus

quality

text_category

speaker_number

gender

→ the larger the model, the better the performance
→ better performance for ICE Scotland

→ the better the audio, the better the results

→ better results for scripted speech 
→ better results for monologue data

→ better performance for (only) female speaker data

Results to be published.
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05 Conclusion and References

How does Whisper compare with trained human transcribers 
in terms of accuracy and speed?RQ3

- human transcription accuracy worse than most Whisper models for both 
corpora

- human transcription speed 77% slower than that of best Whisper models

→ L2 transcribers 
Results to be published.
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05 Conclusion and References

NEXT STEPS

- extend dataset (more data, other varieties?)

- integrate acoustic parameters into analysis

- investigate hallucination problem more closely

- focus on time-aligned transcriptions

- focus on speaker diarization

→ focus on efficient workflows

Results to be published.
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Thank you very much for your attention!

X/Twitter: @weilinghoff

Uni web: https://uni-ko.de/oUfpi

Private web: andreas-weilinghoff.com
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